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-------------------------------------------------------------------ABSTRACT----------------------------------------------------------------- 
This paper considers generation of Minimal Spanning Trees (MST) of a  simple  symmetric and connected graph G. In this 
paper, we propose a new algorithm to find out minimal spanning tree of the graph G based on  the  weightage of nodes in 
graph. The time complexity of the problem is in polynomial order with better execution time comparing  to the  existing  
algorithms.  The  goal  is  to design an algorithm  that is simple, elegant, easy to understand  and  applicable in  field  of  
networking  design,  optimization of  network cost, and mobile computing. 
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1. INTRODUCTION 
 

Raph theory is one of the rapidly developing branches 
of mathematics and finds applicability in computer 
science. It is also applied in social sciences, linguistic, 

physical sciences, communication engineering and plays an 
important role in switching theory, artificial intelligence, 
formal languages, computer graphics, operating systems, 
compiler writing, information organization, and retrieval 
[5].  Graphs, especially trees and binary trees are widely 
used in the representation of data structure [6, 7, 8]. 
A Spanning Tree is a tree of a connected graph G, which 
connect all vertices of the graph. Enumeration of spanning 
tree in undirected simple connected graphs is an important 
issue in many engineering and scientific problems [9]. 
Many problems in this field can be formulated in terms of 
graph. Applying graph theory easily solves most of the 
problems in the fields like networking and circuit analysis. 
In 1981 coauthor Samar Sen Sarma published in his paper 
on algorithm, one of the most important graphs theory 
problems; generation of all spanning trees of a simple 
connected graph[1, 2, 4]. The spanning trees generated by 
this algorithm are all distinct i.e. there is no possibility of 
generation of duplicate spanning trees and also prohibit 
generation of all the non-tree sub-graphs.  
Many practical applications, particularly design of electrical 
circuits, communication networks and transportation 
networks can be formulated as optimization of minimal 
spanning tree problem [1, 2, 3, 4, 5]. The goal in 
optimization of minimal spanning tree is to find a solution 
that is appropriate for a particular application.  When 
studying diverse problems, one often makes an assumption 
of general position:  for minimal spanning trees, one can 

infinitesimally perturb the edge weights so that all are 
distinct; in this way picking out a unique solution. Several 
algorithms exist for generation of Minimal Spanning Tree. 
Otakar Boruvka described an algorithm for finding a 
Minimal Spanning Tree in a graph for which all the edge 
weights are distinct [10]. In 1957, Computer Scientist C. 
Prim discovered another algorithm that finds a minimal 
spanning tree for a connected weighted graph [5]. This 
algorithm continuously increases the size of a tree starting 
with a single vertex until it spans over all the vertices. This 
algorithm was actually discovered in 1930 by 
mathematician Vojtech Jarnik. Joseph Kruskal described 
another minimal spanning tree algorithm where total weight 
of all the edges in the tree is minimized [5, 6]. Edsger 
Dijkstra in 1959 discovered a minimal spanning tree 
algorithm that solves the single source shortest path 
problem for a directed graph with non-negative edge 
weights [5, 6, 7, 8].The enumeration of Spanning tree has a 
long history and has wide applications in the field of 
science, engineering, networking design, mobile 
communication and many other field of applications [5, 6]. 
Several distinct techniques exist for generation of all 
spanning trees of a graph. In 2007, Authors have discussed 

an algorithm where trees are generated by examining 1
e

nC −  
sets of edges where e is the number of edges and n is the 
number of vertices of a simple connected graph eliminating 
some set of edges which form circuit [2]. Here, in this paper 
we introduced a new algorithm for generation of minimal 
weight spanning tree of a graph which requires less 
execution time and memory space compared to the existing 
algorithms. Therefore, we can say that our algorithm is 
optimal considering execution time and space required to 
execute the algorithm with respect to previous algorithms of 
minimal spanning tree generation [1]. 
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2. Terminology: 
 
2.1  Graph: 
An undirected, simple, connected graph G is an ordered 
triple (V(G), E(G ), f) consist of  

• a non empty set of vertices Vn ∈ of the  graph G  
• a set of edges Ee ∈  of graph G and  

a mapping f from the set of edges E to a set of unordered 
pair of elements of V. 
 
2.2  Tree: 
A tree T of a graph G is a simple, connected and acyclic 
graph having exactly one path between the vertices so that 
we can traverse any vertex to any others vertices along the 
edges. In other words, a tree is a simple connected graph 
without any self-loops or parallel edges. 
 
2.3  Spanning Tree: 
A Spanning Tree S is a tree of a connected graph G, which 
touches all vertices of the graph. A spanning tree has n 
vertices and exactly (n-1) edges of a graph G. 
 
2.4  Minimal Spanning Tree:  
Let G be a connected, edge-weighted graph. A minimal 
spanning tree is a subgraph of G that satisfies the following 
properties:  
• It is a tree, that is, it is connected and has no cycles.  
• It is spanning, that is, it contains all vertices of G.  

It has minimal total edge-weight among all possible trees.  
 
2.5  Adjacency Matrix: 
For a graph G of n vertices and e edges, if, set of vertices, 
V(G) = {v1, v2, v3,……, vn} and set of edges E(G) = {e1, e2, 
e3,……, en}. The adjacency matrix A, of weighted graph G, 
is nn× matrix and it can be represent by A = [aij], where  
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2.6  Incidence Matrix: 
For a graph G of n vertices and e edges, the Incidence 
matrix I, of weighted graph G, is the   en×  matrix, can be 
represent by I = [bij], where 
 









=
0

ij

ij

w
b  

 
2.7  Degree of a vertex: 
The degree di of a vertex vi in a graph G is the number of 
edges connected with vi. In other words, degree di is the 
number of vertices adjacent to the vertex vi. 
 
2.8  Node Weightage: 

It is the ratio between total weights of edges to number of 
edges incidences on a node / vertex, i.e. 
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3. Minimal Spanning Tree Generation: 
 
A tree having n nodes and n-1 edges is spanning tree of a 
graph. A preferable and efficient algorithm is one that 
generates trees by selecting only the minimal cost edges of 
the graph in such a way that it will not produce cycle [1, 3]. 
The present algorithm is still required to test circuits for 
some cases. Also we introduce a new circuit testing 
algorithm in the new minimal spanning tree generation 
algorithm as well as existing algorithm of minimal spanning 
tree generation which reduce execution time of each 
algorithm. Therefore, the new spanning tree generation 
algorithm is more efficient in terms of the required 
execution time. In this algorithm, first we calculate 
weightage of every node and then identify a node with 
minimal weightage with respect to the other nodes in graph. 
This will identify a node in the graph G with a minimal 
weight edge incident on it. This minimal weight edge to be 
included in the list of minimal spanning tree S, if satisfies 
the criteria mention in the algorithm of MST generation. 
 
Theorem 1: A spanning tree S of a weighted connected 
graph G is the minimal weight spanning tree if and only if 
there exist no other spanning tree of G at a distance of one 
from S whose weight is smaller than that of S. 
Proof:  Let S1 be a spanning tree in graph G satisfying the 
hypothesis of the theorem there is no spanning tree at a 
distance of one (of G) from S1 which is smaller than S1. If 
S2 is a smallest spanning tree in G, the weight of S1 will 
also be is equal to that of S2. The spanning tree S2 is 
smallest if and only if, it satisfies the hypothesis of the 
theorem.  
Suppose, an edge e in S2 is selected based on the least 
weightage of the vertex of the graph G but it is not in S1. 
Adding e to S1 forms a fundamental circuit with branches 
of S1. Some of the branches in S1 that form fundamental 
circuit with e in S2; each of the branches of S1 has weight 
either smaller than or equal to e because S1 is minimal 
weight. Amongst all these edges of circuit but not in S2, at 
least one, say b, must form fundamental circuit in S2 
containing e. So, b must have same weight as e. Therefore, 
spanning tree ))(( 11 beSS −∪= , obtained from S1, 
though one cycle exchange, has sane weight as S1. S1 has 
one more edge common with S2 and it satisfies the 
condition of theorem.   
 
Theorem 2: An edge e corresponding to the vertex of 
minimal weightage in the graph G is form a spanning tree, 
if it has minimal weight. 
 

if there is an edge between , ( )i jv v E G∈  

and ijw  is weight of edge 

if there is no edge 

if vertex iv incidence of edge je and 

ijw   

otherwise  
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Proof: A spanning tree S of a graph G contains all the 
vertices (exactly once) and n-1 edges, where n is the 
number of vertices in the graph G. An edge e to be selected 
based on the weightage of the vertex. The weightage of a 
node shows the average weight of the edges incident to it. 
The minimal weightage of the vertex indicates that there 
must have at least one edge  whose weight is minimal and it 
could include in the spanning tree S, if and only if, at least 
one end vertex is not yet colored (included in S). To 
prohibit the generation of fundamental circuit in the 
minimal spanning tree S, we select only those edges whose, 
at least one vertex is not yet colored. If edge e form 
fundamental circuit in minimal spanning tree S then we will 
select another edge corresponding to the same vertex whose 
weight is either equal to or just higher than e. 
 
Theorem 3: The combination of n-1 distinct edges is 
formed spanning tree according to theorem 1, if it is 
circuitless.   
 
Proof: The n-1 edges combinations of a graph must contain 
all the vertices of the graph. These combinations obviously 
either contains a circuit or a spanning tree of the graph. 
Therefore, circuit testing is sufficient to ascertain its claim 
as a spanning tree. 
 
4. New Algorithm for Generation of Minimal 
Spanning Tree: 
Here, initially we generate random weighted graph 
according to the given number of nodes and edge density. 
The weight matrix of the randomly generated graph is used 
as input for generation of minimal spanning tree of the 
graph. The output of the algorithm is minimal weight 
spanning tree where each edges of the tree is represented by 
the edge number from 0,1,2,……..,e and nodes a, b, c, d, … 
are also represented by 1, 2, 3, ...n  respectively. The weight 
of the edge is store in the adjacency matrix if there is an 
edge between the nodes. 

 
Step1: Generate random weighted graph according to the 
given number of nodes and edge density of graph and 
corresponding weight matrix. 
 
Step2: Calculate weightage of all the nodes of graph G. 
 
Step3: Identify the node Gv∈  of minimal weightage. 
 
Step4: Choose an edge e incidence on the minimal 
weightage vertex v  whose weight is minimal among the 
incidence edges and at least one end vertices is not already 
colored. 
 
Step5: If, the edge e form fundamental circuit with the edge 
set in S, select another edge e corresponding to the same 
vertex v  whose weight is either equal or just higher to 
minimal weight edge incidence on it. 
 
 Step6: otherwise, put edge e into S and color the 
corresponding end vertex v . 
 

 Step7: Apply iteratively from step 2 to step 6 till (n-1) 
edges not selected.      

Step8: Calculate sum of the weight of the edges in the 
MST, S. 
 
Step9:  Stop. 
 
Theorem 4: If a subgraph of n-1 edges contains more than 
three nodes of degree more than one and if there is no 
pendent edge in the graph, the subgraph contains a circuit. 
 
Proof: For simplicity and easy to explain the theorem we 
consider a simple connected graph, shown in figure-1. 

 
 

 
Form the given graph in figure 1, if we consider the edge 
combination, 1 4 5 6 2, the degree of each vertices 
corresponding to the given edge combination are, 

            
13131
edcba

 

 
Since there are three vertices of degree one and only                    
                                                                                               
                                                                                 two 
vertices of degree more than one, hence this n-1 edges 
combination will not produce a tree of the graph G. The 
pictorial form of this tree is shown in figure 2. 
 

 
 

 
 
 
 
Considering another example, if edge combination is, 0 3 5 
6 2, of the graph shown in figure 1, the degree of each 
vertices corresponding to the given edges combination are,  
 

         
32211
edcba

 

Fig.1: A Simple Connected Graph 

Node No. : 
Degree  :    

Fig. 2: An Illustrative Tree of Graph in Fig. 1 

Node No. :
Degree  :    
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In the above combination two vertices of degree one and 
three vertices of degree more than one, hence this 
combination may give the circuit. Deleting pendent edges 
incidence on vertex a and b, the modified degree of all the 
vertices are, 
 
 

         
22200
edcba

 

 
Since, the degree of all the three vertices are more than one, 
this is confirm that the edge combination will produce a 
circuit. The pictorial form of this combination is shown in 
figure 3. 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
5. Circuits Testing Algorithm: 
 
This algorithm ascertains us by testing whether n-1 edges 
combinations generated by “All Spanning Tree Generation 
Algorithm” are a circuit or not. 
 

Step 1: From n-1 edges and incidence matrix obtain degree 
of each node contributed by n-1 edges under consideration. 
 

Step 2: Test whether at least two nodes of degree one? If 
not, go to step 6. Otherwise continue. 
 

Step 3: test whether at least three nodes of degree more 
than one? If not go to step 5 
 

Step 4: Delete pendant edges, if exists of n-1 edges and 
modify the degree of the nodes accordingly and go to step 
2. Otherwise go to step 6. 
 

Step 5: Edge combinations are tree.  
Step 6: Stop. 

 
6. Complexity of the Proposed Algorithm:    
The time complexity of the circuit testing remains same as 
the existing algorithms, however the new circuit testing 
algorithm is simple and easy to implement. The probability 
of generation of the circuit is very less in the new minimal 
spanning tree generation algorithm because we have always 
chosen an edge of the graph G, at least one end vertex of 
which is not yet colored. Obviously, time complexity of our 
algorithm is less than the existing algorithms due to 
removal of sorting of edges and finding the neighbor in 
every stage whose weight is minimal, of the constructed 
spanning tree. The space complexity of the algorithm is 
(n.e) where n is the number of vertices and e is number of 
edges of the graph G.   
 
7. Results and Conclusion: 
Hardware used to carry out this experiment is Pentium   IV 
computer and one GB DDR2 RAM. The program written in 
‘C’ programming language and Turbo ‘C’ compiler used 
for compilation and execution purpose.  The experiment has 
performed on several graphs of different types. 
 
The storage requirement of this algorithm is proportional to 
(n x e). The experimental result of the algorithms is given in 
Table 1 and comparative chart of execution time of 
Kruskal, Prim and New Algorithm shown in the figure-4. 
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Table1: Execution time of Kruskal, Prim and  
              New algorithm 
 

Execution Time of Algorithm * 100   
(in Second) No. of 

Node 
No. of 
Edge Kruskal Prim New 

Algorithm 
3 3 1.70 1.95 1.76 
4 4 4.56 4.46 3.51 
4 5 4.67 4.72 3.57 
5 8 7.36 7.42 5.94 
6 12 8.84 8.90 8.90 
7 13 18.78 16.75 12.52 
7 17 19.12 20.59 16.22 
8 25 18.89 18.89 18.80 
9 21 24.44 21.75 21.61 
9 32 37.35 31.69 29.88 

10 18 33.28 32.76 30.42 
10 42 38.66 36.80 32.72 
11 27 36.80 36.74 33.40 
11 50 40.18 37.56 37.26 
12 20 36.68 37.14 36.32 
12 53 51.30 40.32 32.84 
13 31 73.60 51.74 47.68 
13 70 79.94 55.03 57.68 
14 55 71.94 67.87 70.83 
14 82 124.68 120.20 122.70 
15 32 87.60 73.68 64.50 
15 72 121.65 101.85 105.95 
16 48 98.25 74.35 73.60 
16 108 123.70 118.65 102.35 
17 41 121.40 109.30 102.35 
17 55 144.75 124.55 120.25 
18 76 146.35 125.85 136.10 
19 68 177.95 156.80 128.90 
20 95 317.60 231.81 315.40 
21 74 343.80 312.60 315.60 
22 69 530.6 292.2 269.4 
23 126 596.40 336.63 310.64 
24 82 561.22 441.02 420.15 
25 78 540.34 434.77 410.23 
30 30 662.32 616.43 580.12 


