
Int. J. Advanced Networking and Applications
Volume: 01 Issue: 03 Pages: 154 -158 (2009)

154

---ABSTRACT---
This paper considers generation of Minimal Spanning Trees (MST) of a simple symmetric and connected graph G. In this
paper, we propose a new algorithm to find out minimal spanning tree of the graph G based on the weightage of nodes in
graph. The time complexity of the problem is in polynomial order with better execution time comparing to the existing
algorithms. The goal is to design an algorithm that is simple, elegant, easy to understand and applicable in field of
networking design, optimization of network cost, and mobile computing.

Keywords: Graph, Subgraph, Tree, Spanning Tree, Minimal Spanning Tree, Weightage.
--

Date of Submission: October 8, 2009 Accepted: November 26, 2009
--

1. INTRODUCTION

Raph theory is one of the rapidly developing branches
of mathematics and finds applicability in computer
science. It is also applied in social sciences, linguistic,

physical sciences, communication engineering and plays an
important role in switching theory, artificial intelligence,
formal languages, computer graphics, operating systems,
compiler writing, information organization, and retrieval
[5]. Graphs, especially trees and binary trees are widely
used in the representation of data structure [6, 7, 8].
A Spanning Tree is a tree of a connected graph G, which
connect all vertices of the graph. Enumeration of spanning
tree in undirected simple connected graphs is an important
issue in many engineering and scientific problems [9].
Many problems in this field can be formulated in terms of
graph. Applying graph theory easily solves most of the
problems in the fields like networking and circuit analysis.
In 1981 coauthor Samar Sen Sarma published in his paper
on algorithm, one of the most important graphs theory
problems; generation of all spanning trees of a simple
connected graph[1, 2, 4]. The spanning trees generated by
this algorithm are all distinct i.e. there is no possibility of
generation of duplicate spanning trees and also prohibit
generation of all the non-tree sub-graphs.
Many practical applications, particularly design of electrical
circuits, communication networks and transportation
networks can be formulated as optimization of minimal
spanning tree problem [1, 2, 3, 4, 5]. The goal in
optimization of minimal spanning tree is to find a solution
that is appropriate for a particular application. When
studying diverse problems, one often makes an assumption
of general position: for minimal spanning trees, one can

infinitesimally perturb the edge weights so that all are
distinct; in this way picking out a unique solution. Several
algorithms exist for generation of Minimal Spanning Tree.
Otakar Boruvka described an algorithm for finding a
Minimal Spanning Tree in a graph for which all the edge
weights are distinct [10]. In 1957, Computer Scientist C.
Prim discovered another algorithm that finds a minimal
spanning tree for a connected weighted graph [5]. This
algorithm continuously increases the size of a tree starting
with a single vertex until it spans over all the vertices. This
algorithm was actually discovered in 1930 by
mathematician Vojtech Jarnik. Joseph Kruskal described
another minimal spanning tree algorithm where total weight
of all the edges in the tree is minimized [5, 6]. Edsger
Dijkstra in 1959 discovered a minimal spanning tree
algorithm that solves the single source shortest path
problem for a directed graph with non-negative edge
weights [5, 6, 7, 8].The enumeration of Spanning tree has a
long history and has wide applications in the field of
science, engineering, networking design, mobile
communication and many other field of applications [5, 6].
Several distinct techniques exist for generation of all
spanning trees of a graph. In 2007, Authors have discussed

an algorithm where trees are generated by examining 1
e

nC −
sets of edges where e is the number of edges and n is the
number of vertices of a simple connected graph eliminating
some set of edges which form circuit [2]. Here, in this paper
we introduced a new algorithm for generation of minimal
weight spanning tree of a graph which requires less
execution time and memory space compared to the existing
algorithms. Therefore, we can say that our algorithm is
optimal considering execution time and space required to
execute the algorithm with respect to previous algorithms of
minimal spanning tree generation [1].

An Approach of MST Generation Algorithm
Based on Node Weightage

Sanjay Kumar Pal
Department of Computer Science and Applications

NSHM College of Management & Technology, Kolkata – 700 053. INDIA
Email: pal.sanjaykumar@gmail.com

Samar Sen Sarma

Department of Computer Science & Engineering
University of Calcutta, Kolkata – 700 009. INDIA

Email: sssarma2001@yahoo.com

G

Int. J. Advanced Networking and Applications
Volume: 01 Issue: 03 Pages: 154 -158 (2009)

155

2. Terminology:

2.1 Graph:
An undirected, simple, connected graph G is an ordered
triple (V(G), E(G), f) consist of

• a non empty set of vertices Vn ∈ of the graph G
• a set of edges Ee ∈ of graph G and

a mapping f from the set of edges E to a set of unordered
pair of elements of V.

2.2 Tree:
A tree T of a graph G is a simple, connected and acyclic
graph having exactly one path between the vertices so that
we can traverse any vertex to any others vertices along the
edges. In other words, a tree is a simple connected graph
without any self-loops or parallel edges.

2.3 Spanning Tree:
A Spanning Tree S is a tree of a connected graph G, which
touches all vertices of the graph. A spanning tree has n
vertices and exactly (n-1) edges of a graph G.

2.4 Minimal Spanning Tree:
Let G be a connected, edge-weighted graph. A minimal
spanning tree is a subgraph of G that satisfies the following
properties:
• It is a tree, that is, it is connected and has no cycles.
• It is spanning, that is, it contains all vertices of G.

It has minimal total edge-weight among all possible trees.

2.5 Adjacency Matrix:
For a graph G of n vertices and e edges, if, set of vertices,
V(G) = {v1, v2, v3,……, vn} and set of edges E(G) = {e1, e2,
e3,……, en}. The adjacency matrix A, of weighted graph G,
is nn× matrix and it can be represent by A = [aij], where









=
0

ij

ij

w
a

2.6 Incidence Matrix:
For a graph G of n vertices and e edges, the Incidence
matrix I, of weighted graph G, is the en× matrix, can be
represent by I = [bij], where









=
0

ij

ij

w
b

2.7 Degree of a vertex:
The degree di of a vertex vi in a graph G is the number of
edges connected with vi. In other words, degree di is the
number of vertices adjacent to the vertex vi.

2.8 Node Weightage:

It is the ratio between total weights of edges to number of
edges incidences on a node / vertex, i.e.

e

ew
nodethatonincidanceedgesofNumber
nodeaonincidanceedgesofweightTotal

Weightage
Node

ivEe
∑

∈=

=

)(
)(

3. Minimal Spanning Tree Generation:

A tree having n nodes and n-1 edges is spanning tree of a
graph. A preferable and efficient algorithm is one that
generates trees by selecting only the minimal cost edges of
the graph in such a way that it will not produce cycle [1, 3].
The present algorithm is still required to test circuits for
some cases. Also we introduce a new circuit testing
algorithm in the new minimal spanning tree generation
algorithm as well as existing algorithm of minimal spanning
tree generation which reduce execution time of each
algorithm. Therefore, the new spanning tree generation
algorithm is more efficient in terms of the required
execution time. In this algorithm, first we calculate
weightage of every node and then identify a node with
minimal weightage with respect to the other nodes in graph.
This will identify a node in the graph G with a minimal
weight edge incident on it. This minimal weight edge to be
included in the list of minimal spanning tree S, if satisfies
the criteria mention in the algorithm of MST generation.

Theorem 1: A spanning tree S of a weighted connected
graph G is the minimal weight spanning tree if and only if
there exist no other spanning tree of G at a distance of one
from S whose weight is smaller than that of S.
Proof: Let S1 be a spanning tree in graph G satisfying the
hypothesis of the theorem there is no spanning tree at a
distance of one (of G) from S1 which is smaller than S1. If
S2 is a smallest spanning tree in G, the weight of S1 will
also be is equal to that of S2. The spanning tree S2 is
smallest if and only if, it satisfies the hypothesis of the
theorem.
Suppose, an edge e in S2 is selected based on the least
weightage of the vertex of the graph G but it is not in S1.
Adding e to S1 forms a fundamental circuit with branches
of S1. Some of the branches in S1 that form fundamental
circuit with e in S2; each of the branches of S1 has weight
either smaller than or equal to e because S1 is minimal
weight. Amongst all these edges of circuit but not in S2, at
least one, say b, must form fundamental circuit in S2
containing e. So, b must have same weight as e. Therefore,
spanning tree))((11 beSS −∪= , obtained from S1,
though one cycle exchange, has sane weight as S1. S1 has
one more edge common with S2 and it satisfies the
condition of theorem.

Theorem 2: An edge e corresponding to the vertex of
minimal weightage in the graph G is form a spanning tree,
if it has minimal weight.

if there is an edge between , ()i jv v E G∈

and ijw is weight of edge

if there is no edge

if vertex iv incidence of edge je and

ijw

otherwise

Int. J. Advanced Networking and Applications
Volume: 01 Issue: 03 Pages: 154 -158 (2009)

156

Proof: A spanning tree S of a graph G contains all the
vertices (exactly once) and n-1 edges, where n is the
number of vertices in the graph G. An edge e to be selected
based on the weightage of the vertex. The weightage of a
node shows the average weight of the edges incident to it.
The minimal weightage of the vertex indicates that there
must have at least one edge whose weight is minimal and it
could include in the spanning tree S, if and only if, at least
one end vertex is not yet colored (included in S). To
prohibit the generation of fundamental circuit in the
minimal spanning tree S, we select only those edges whose,
at least one vertex is not yet colored. If edge e form
fundamental circuit in minimal spanning tree S then we will
select another edge corresponding to the same vertex whose
weight is either equal to or just higher than e.

Theorem 3: The combination of n-1 distinct edges is
formed spanning tree according to theorem 1, if it is
circuitless.

Proof: The n-1 edges combinations of a graph must contain
all the vertices of the graph. These combinations obviously
either contains a circuit or a spanning tree of the graph.
Therefore, circuit testing is sufficient to ascertain its claim
as a spanning tree.

4. New Algorithm for Generation of Minimal
Spanning Tree:
Here, initially we generate random weighted graph
according to the given number of nodes and edge density.
The weight matrix of the randomly generated graph is used
as input for generation of minimal spanning tree of the
graph. The output of the algorithm is minimal weight
spanning tree where each edges of the tree is represented by
the edge number from 0,1,2,……..,e and nodes a, b, c, d, …
are also represented by 1, 2, 3, ...n respectively. The weight
of the edge is store in the adjacency matrix if there is an
edge between the nodes.

Step1: Generate random weighted graph according to the
given number of nodes and edge density of graph and
corresponding weight matrix.

Step2: Calculate weightage of all the nodes of graph G.

Step3: Identify the node Gv∈ of minimal weightage.

Step4: Choose an edge e incidence on the minimal
weightage vertex v whose weight is minimal among the
incidence edges and at least one end vertices is not already
colored.

Step5: If, the edge e form fundamental circuit with the edge
set in S, select another edge e corresponding to the same
vertex v whose weight is either equal or just higher to
minimal weight edge incidence on it.

 Step6: otherwise, put edge e into S and color the
corresponding end vertex v .

 Step7: Apply iteratively from step 2 to step 6 till (n-1)
edges not selected.

Step8: Calculate sum of the weight of the edges in the
MST, S.

Step9: Stop.

Theorem 4: If a subgraph of n-1 edges contains more than
three nodes of degree more than one and if there is no
pendent edge in the graph, the subgraph contains a circuit.

Proof: For simplicity and easy to explain the theorem we
consider a simple connected graph, shown in figure-1.

Form the given graph in figure 1, if we consider the edge
combination, 1 4 5 6 2, the degree of each vertices
corresponding to the given edge combination are,

13131
edcba

Since there are three vertices of degree one and only

 two
vertices of degree more than one, hence this n-1 edges
combination will not produce a tree of the graph G. The
pictorial form of this tree is shown in figure 2.

Considering another example, if edge combination is, 0 3 5
6 2, of the graph shown in figure 1, the degree of each
vertices corresponding to the given edges combination are,

32211
edcba

Fig.1: A Simple Connected Graph

Node No. :
Degree :

Fig. 2: An Illustrative Tree of Graph in Fig. 1

Node No. :
Degree :

Int. J. Advanced Networking and Applications
Volume: 01 Issue: 03 Pages: 154 -158 (2009)

157

In the above combination two vertices of degree one and
three vertices of degree more than one, hence this
combination may give the circuit. Deleting pendent edges
incidence on vertex a and b, the modified degree of all the
vertices are,

22200
edcba

Since, the degree of all the three vertices are more than one,
this is confirm that the edge combination will produce a
circuit. The pictorial form of this combination is shown in
figure 3.

5. Circuits Testing Algorithm:

This algorithm ascertains us by testing whether n-1 edges
combinations generated by “All Spanning Tree Generation
Algorithm” are a circuit or not.

Step 1: From n-1 edges and incidence matrix obtain degree
of each node contributed by n-1 edges under consideration.

Step 2: Test whether at least two nodes of degree one? If
not, go to step 6. Otherwise continue.

Step 3: test whether at least three nodes of degree more
than one? If not go to step 5

Step 4: Delete pendant edges, if exists of n-1 edges and
modify the degree of the nodes accordingly and go to step
2. Otherwise go to step 6.

Step 5: Edge combinations are tree.
Step 6: Stop.

6. Complexity of the Proposed Algorithm:
The time complexity of the circuit testing remains same as
the existing algorithms, however the new circuit testing
algorithm is simple and easy to implement. The probability
of generation of the circuit is very less in the new minimal
spanning tree generation algorithm because we have always
chosen an edge of the graph G, at least one end vertex of
which is not yet colored. Obviously, time complexity of our
algorithm is less than the existing algorithms due to
removal of sorting of edges and finding the neighbor in
every stage whose weight is minimal, of the constructed
spanning tree. The space complexity of the algorithm is
(n.e) where n is the number of vertices and e is number of
edges of the graph G.

7. Results and Conclusion:
Hardware used to carry out this experiment is Pentium IV
computer and one GB DDR2 RAM. The program written in
‘C’ programming language and Turbo ‘C’ compiler used
for compilation and execution purpose. The experiment has
performed on several graphs of different types.

The storage requirement of this algorithm is proportional to
(n x e). The experimental result of the algorithms is given in
Table 1 and comparative chart of execution time of
Kruskal, Prim and New Algorithm shown in the figure-4.

References:
 [1]. A. Rakshit, A. K. Choudhury, S. S. Sarma and R. K.
Sen, “An Efficient Tree Generation Algorithm,” IETE, vol.
27, pp. 105-109, 1981.

Node No. :
Degree :

Fig. 3: An Illustrative Circuit of Graph in Fig. 1

Int. J. Advanced Networking and Applications
Volume: 01 Issue: 03 Pages: 154 -158 (2009)

158

[2]. Sanjay Kumar Pal and Samar Sen Sarma, “An Efficient
All Spanning Tree Generation Algorithm”, IJCS, vol. 2,
No. 1, pp. 48 – 59, January 2008.

[3]. Sanjay Kumar Pal et. al., “Generation of Minimal
Spanning Tree Based on Analytical Perspective of Degree
Sequence”, Journal of Physical Science, Vol. 13, 2009.

[4]. Kenneth Sorensen and Gerrit K. Janssens, “An
Algorithm to Generate All Spanning Trees of a Graph in
Order of Increasing Cost,” Pesquisa Operacional, vol. 25,
pp. 219- 229, 2005.

 [5]. N. Deo, “Graph Theory with Application
to Engineering and Computer Sciences,” PHI, Englewood
Cliffs, N. J, 2007.

[6]. Thomas H. Coremen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein, “Introduction to Algorithms”, PHI,
Second Edition, 2008.

[7]. Harowitz Sahnai & Rajsekaran, “Fundamentals of
Computer Algorithms”, Galgotia Publications Pvt. Ltd.,
2000.

[8] Sanjoy Dasgupta, Christos Papadimitriou, Umesh
Vazirani, “Algorithms”, Tata McGraw-Hill, First Edition,
2008
[9] http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-
310CFall-2007/LectureNotes/20_ln.pdf.

[10] R. J. Wilson, “History of Graph Theory”, Section 1.3,
Handbook of Graph Theory, pp. 29 – 49, 2004.

AUTHORS BIOGRAPHY
Sanjay Kumar Pal

Completed degree in Mechanical Engineering
and MCA. He has more than 18 years
experience, 8 years in Engineering industry, 4
years in Software engineering, 6+ years in
Academic institution. He has 20 National and

international publication in the field of graph Theory and
Network Topology Design.

Prof. Samar sen Sarma

Completed M.Tech. and Ph.D in Computer
Sc. from Calcutta University. At present Sr.
Professor of Calcutta University in the dept.
Computer Sc. & Engineering. He has more
than 150 research paper in national and

international Journal.

Table1: Execution time of Kruskal, Prim and
 New algorithm

Execution Time of Algorithm * 100
(in Second) No. of

Node
No. of
Edge Kruskal Prim New

Algorithm
3 3 1.70 1.95 1.76
4 4 4.56 4.46 3.51
4 5 4.67 4.72 3.57
5 8 7.36 7.42 5.94
6 12 8.84 8.90 8.90
7 13 18.78 16.75 12.52
7 17 19.12 20.59 16.22
8 25 18.89 18.89 18.80
9 21 24.44 21.75 21.61
9 32 37.35 31.69 29.88

10 18 33.28 32.76 30.42
10 42 38.66 36.80 32.72
11 27 36.80 36.74 33.40
11 50 40.18 37.56 37.26
12 20 36.68 37.14 36.32
12 53 51.30 40.32 32.84
13 31 73.60 51.74 47.68
13 70 79.94 55.03 57.68
14 55 71.94 67.87 70.83
14 82 124.68 120.20 122.70
15 32 87.60 73.68 64.50
15 72 121.65 101.85 105.95
16 48 98.25 74.35 73.60
16 108 123.70 118.65 102.35
17 41 121.40 109.30 102.35
17 55 144.75 124.55 120.25
18 76 146.35 125.85 136.10
19 68 177.95 156.80 128.90
20 95 317.60 231.81 315.40
21 74 343.80 312.60 315.60
22 69 530.6 292.2 269.4
23 126 596.40 336.63 310.64
24 82 561.22 441.02 420.15
25 78 540.34 434.77 410.23
30 30 662.32 616.43 580.12

